Rankers Hub

Approximation MCQ Objective Question with Answer

Approximation Objective Question with Answer, Approximation Quantitative Aptitude, Approximation objective questions

31) 29.8% of 260 + 60.01% of 510 –103.57 = ?

(a) 450

(b) 320

(c) 210

(d) 280

(e) 350


Solution: (d)
The difference between two nearest values is 70 (210 and 280).
So round off the numbers to the nearest integers.
29.8% of 260 \(\displaystyle \approx \)30% of 260; 60.01% of 510 \(\displaystyle \approx \)60% of 510 and 103.57 \(\displaystyle \approx \) 104
Now the equation will become
30% of 260 + 60% of 510 – 104 = ?
\(\displaystyle \frac{{30}}{{100}}\times 260+\frac{{60}}{{100}}\times 510-104=?\)
78 + 306 – 104 = ?
? = 384 – 104 = 280

32) \(\displaystyle \frac{{\sqrt{{2498}}\times \sqrt{{625}}}}{{\sqrt{{99}}}}=?\)

(a) 110

(b) 90

(c) 200

(d) 160

(e) 125


Solution: (e)
By approximation, take the nearest square values
\(\displaystyle \frac{{50\times 25}}{{10}}=\frac{{1250}}{{10}}=125\)

33) \(\displaystyle 4\times \frac{3}{{13}}\times 952-128\frac{5}{7}=?\)

(a) 823

(b) 840

(c) 835

(d) 839

(e) 845


Solution: (a)
\(\displaystyle ?\approx \frac{{4\times 3}}{{12}}\times 952-129\)
\(\displaystyle \approx \) 952 – 129 \(\displaystyle \approx \) 823

34) \(\displaystyle {{10}^{3}}\times {{100}^{3}}+999999999={{10}^{?}}+{{10}^{?}}\)

(a) 6, 9

(b) 9, 9

(c) 6, 12

(d) 16, 9

(e) 6, 18


Solution: (b)
\(\displaystyle {{10}^{3}}\times {{100}^{3}}+{{10}^{9}}={{10}^{?}}+{{10}^{?}}\)
\(\displaystyle {{10}^{9}}+{{10}^{9}}={{10}^{?}}+{{10}^{?}}\Rightarrow ?=9,9\)

35) 22.9782 + 9.002 – ? = 23.001

(a) 9

(b) 8

(c) 6

(d) 11

(e) 12


Solution: (a)
\(\displaystyle 23+9-?=23\)
\(\displaystyle \Rightarrow ?=9\)

36) \(\displaystyle 5432.91\div 2324.65\times 210.05=?\)

(a) 370

(b) 410

(c) 437

(d) 491

(e) 510


Solution: (d)
Taking approximate values,
\(\displaystyle 5500\div 2300\text{ }\times 200=?\)
\(\displaystyle \approx 480=?\)
So, by approximation we can see that the answer is (d)

37) \(\displaystyle \sqrt{{7321}}\times 35.999=?\)

(a) 2980

(b) 3080

(c) 3180

(d) 3286

(e) 3470


Solution: (b)
3080

38) \(\displaystyle 64.66\div 11.31\times 5.25\text{ }=?\)

(a) 30

(b) 35

(c) 39

(d) 42

(e) 45


Solution: (a)
By approximation, take nearest approximate values
\(\displaystyle 66\div 11\text{ }\times 5=?\)
\(\displaystyle 6\times 5=?\)
\(\displaystyle \approx 30=?\)

39) \(\displaystyle 1002\div 49\times 99-1299=?\)

(a) 700

(b) 600

(c) 900

(d) 250

(e) 400


Solution: (a)
It can be rounded off to the nearest ten’s places.
1002 \(\displaystyle \approx \) 1000; 49 \(\displaystyle \approx \) 50; 99 \(\displaystyle \approx \) 100 and 1299 \(\displaystyle \approx \)1300
Now the equation will become
\(\displaystyle 1000\div 50\times 100-1300=?\)
\(\displaystyle 20\times 100-1300=?\)
\(\displaystyle 2000-1300=?\)
\(\displaystyle ?=700\)

40) \(\displaystyle {{21.98}^{2}}-{{25.02}^{2}}+{{13.03}^{2}}=?\)

(a) 25

(b) 120

(c) 10

(d) 65

(e) 140


Solution: (a)
\(\displaystyle {{21.98}^{2}}\approx {{22}^{2}}\)
\(\displaystyle {{25.02}^{2}}\approx {{25}^{2}}\)
And \(\displaystyle {{13.03}^{2}}\approx {{13}^{2}}\)
The equation will becomes
\(\displaystyle {{22}^{2}}+{{25}^{2}}+{{13}^{2}}=?\)
\(\displaystyle 484-625+169=?\)
\(\displaystyle 653-625=?\)
\(\displaystyle 28=?\)
so the nearest value is 25