Rankers Hub

Approximation objective questions

Approximation MCQ Questions and answers, Approximation using VBODMAS, BODMAS questions, Approximation MCQ, Aptitude MCQ on approximation.,

41) \(\displaystyle \sqrt{{441.441}}+\sqrt{{256.256}}=?\)

(a) 37

(b) 36

(c) 34

(d) 31

(e) 30


Solution: (a)
\(\displaystyle ?=\sqrt{{441.441}}+\sqrt{{256.256}}\)
\(\displaystyle \sqrt{{441}}+\sqrt{{256}}\)
\(\displaystyle =(21+16)\approx 37\)

42) \(\displaystyle {{32.51}^{2}}-{{17.45}^{2}}=?\)

(a) 780

(b) 850

(c) 680

(d) 820

(e) 750


Solution: (e)
\(\displaystyle ?=(32.51+17.45)(32.51-17.45)\)
\(\displaystyle 49.96\times 15.06\) (Take approximate values)
\(\displaystyle \approx 50\times 15\approx 750\)

43) \(\displaystyle 195.994\div 13.995\div 2.5=?\)

(a) 5.15

(b) 5.9

(c) 5.75

(d) 5.1

(e) 5.6


Solution: (e)
\(\displaystyle \frac{{196}}{{14}}\times \frac{1}{{2.5}}=5.6\)

44) 88.25% of 450 = ? % of 530

(a) 70

(b) 68

(c) 75

(d) 80

(e) 65


Solution: (c)
\(\displaystyle \frac{{450\times 88}}{{100}}\approx \frac{{530\times ?}}{{100}}\)
\(\displaystyle \approx \frac{{450\times 88}}{{530}}\approx 75\)

45) \(\displaystyle 3745\div 24.05\times 17.98=?\)

(a) 2860

(b) 2800

(c) 2760

(d) 2720

(e) 2840


Solution: (b)
\(\displaystyle ?\approx \frac{{3745}}{{24}}\times 18\approx 2808.75\)
Therefore, the required answer is 2800

46) \(\displaystyle (1702\div 68)\times 136.05=?\)

(a) 3500

(b) 3550

(c) 3450

(d) 3400

(e) 3525


Solution: (d)
\(\displaystyle ?=(1702\div 68)\times 136.05\)
\(\displaystyle \approx \frac{{1700}}{{68}}\times 136\approx 3400\)

47) 25.05% of 2845 + 14.95 × 2400 = ?

(a) 36,700

(b) 36,500

(c) 35,800

(d) 35,600

(e) 36,200


Solution: (a)
\(\displaystyle ?=25.05\%\times 2845+14.95\times 2400\)
\(\displaystyle \frac{{25}}{{100}}\times 2845+15\times 2400\)
\(\displaystyle \approx 711.25+36000\)
\(\displaystyle \approx 36711.25\approx 36700\)

48) \(\displaystyle 2959.85\div 16.001-34.99=?\)

(a) 160

(b) 150

(c) 140

(d) 180

(e) 170


Solution: (b)
\(\displaystyle ?=2959.85\div 16.001-34.99\)
\(\displaystyle \approx 2960\div 16-35\)
\(\displaystyle \approx \frac{{2960}}{{16}}-35\approx 185-35\approx 150\)

49) \(\displaystyle \sqrt{{898}}\times {{12.005}^{2}}+?=5000\)

(a) 680

(b) 720

(c) 750

(d) 620

(e) 630


Solution: (a)
\(\displaystyle \sqrt{{900}}\times {{12}^{2}}+?\approx 5000\)
\(\displaystyle 898\approx 900;12.005\approx 12\)
\(\displaystyle 30\times 144+?\approx 5000\)
\(\displaystyle ?\approx 5000-4320\approx 680\)

50) \(\displaystyle 2950\div 12.25+160=?\)

(a) 440

(b) 350

(c) 380

(d) 360

(e) 400


Solution: (a)

\(\displaystyle ?=\frac{{2950}}{{12.25}}+160\)

\(\displaystyle \approx \frac{{2950}}{{12}}+160\approx 405.8\)

Clearly \(\displaystyle 12.25\approx 12<12.25\)

Hence, \(\displaystyle 2950\div 12\) will give larger quotient. Therefore, answer should be 405