Approximation objective questions
41) \(\displaystyle \sqrt{{441.441}}+\sqrt{{256.256}}=?\)
(a) 37
(b) 36
(c) 34
(d) 31
(e) 30
Solution: (a)
\(\displaystyle ?=\sqrt{{441.441}}+\sqrt{{256.256}}\)
\(\displaystyle \sqrt{{441}}+\sqrt{{256}}\)
\(\displaystyle =(21+16)\approx 37\)
42) \(\displaystyle {{32.51}^{2}}-{{17.45}^{2}}=?\)
(a) 780
(b) 850
(c) 680
(d) 820
(e) 750
Solution: (e)
\(\displaystyle ?=(32.51+17.45)(32.51-17.45)\)
\(\displaystyle 49.96\times 15.06\) (Take approximate values)
\(\displaystyle \approx 50\times 15\approx 750\)
43) \(\displaystyle 195.994\div 13.995\div 2.5=?\)
(a) 5.15
(b) 5.9
(c) 5.75
(d) 5.1
(e) 5.6
Solution: (e)
\(\displaystyle \frac{{196}}{{14}}\times \frac{1}{{2.5}}=5.6\)
44) 88.25% of 450 = ? % of 530
(a) 70
(b) 68
(c) 75
(d) 80
(e) 65
Solution: (c)
\(\displaystyle \frac{{450\times 88}}{{100}}\approx \frac{{530\times ?}}{{100}}\)
\(\displaystyle \approx \frac{{450\times 88}}{{530}}\approx 75\)
45) \(\displaystyle 3745\div 24.05\times 17.98=?\)
(a) 2860
(b) 2800
(c) 2760
(d) 2720
(e) 2840
Solution: (b)
\(\displaystyle ?\approx \frac{{3745}}{{24}}\times 18\approx 2808.75\)
Therefore, the required answer is 2800
46) \(\displaystyle (1702\div 68)\times 136.05=?\)
(a) 3500
(b) 3550
(c) 3450
(d) 3400
(e) 3525
Solution: (d)
\(\displaystyle ?=(1702\div 68)\times 136.05\)
\(\displaystyle \approx \frac{{1700}}{{68}}\times 136\approx 3400\)
47) 25.05% of 2845 + 14.95 × 2400 = ?
(a) 36,700
(b) 36,500
(c) 35,800
(d) 35,600
(e) 36,200
Solution: (a)
\(\displaystyle ?=25.05\%\times 2845+14.95\times 2400\)
\(\displaystyle \frac{{25}}{{100}}\times 2845+15\times 2400\)
\(\displaystyle \approx 711.25+36000\)
\(\displaystyle \approx 36711.25\approx 36700\)
48) \(\displaystyle 2959.85\div 16.001-34.99=?\)
(a) 160
(b) 150
(c) 140
(d) 180
(e) 170
Solution: (b)
\(\displaystyle ?=2959.85\div 16.001-34.99\)
\(\displaystyle \approx 2960\div 16-35\)
\(\displaystyle \approx \frac{{2960}}{{16}}-35\approx 185-35\approx 150\)
49) \(\displaystyle \sqrt{{898}}\times {{12.005}^{2}}+?=5000\)
(a) 680
(b) 720
(c) 750
(d) 620
(e) 630
Solution: (a)
\(\displaystyle \sqrt{{900}}\times {{12}^{2}}+?\approx 5000\)
\(\displaystyle 898\approx 900;12.005\approx 12\)
\(\displaystyle 30\times 144+?\approx 5000\)
\(\displaystyle ?\approx 5000-4320\approx 680\)
50) \(\displaystyle 2950\div 12.25+160=?\)
(a) 440
(b) 350
(c) 380
(d) 360
(e) 400
Solution: (a)
\(\displaystyle ?=\frac{{2950}}{{12.25}}+160\)
\(\displaystyle \approx \frac{{2950}}{{12}}+160\approx 405.8\)
Clearly \(\displaystyle 12.25\approx 12<12.25\)
Hence, \(\displaystyle 2950\div 12\) will give larger quotient. Therefore, answer should be 405
Pages:
1 2 3 4 5 6 7 8 9 10