Rankers Hub

mcq on approximation with answers for ssc cgl

mcq on approximation with answers for ssc

71) \(\displaystyle 11.003\times 10.998+111.01=?\)

(a) 255

(b) 195

(c) 230

(d) 270

(e) 210


Solution: (c)
\(\displaystyle 11\times 11+111=121+111=232\)

72) \(\displaystyle {{14.5}^{2}}=?\)

(a) 235

(b) 190

(c) 250

(d) 185

(e) 210


Solution: (e)
\(\displaystyle {{14.5}^{2}}=210.25\approx 210\)

73) latex \displaystyle 765.0003\div 44.999=?$

(a) 17

(b) 11

(c) 6

(d) 22

(e) 30


Solution: (a)
\(\displaystyle \frac{{765}}{{45}}=17\)

73) \(\displaystyle 15.003\times 14.998+125.010=?\)

(a) 400

(b) 320

(c) 290

(d) 270

(e) 350


Solution: (e)
\(\displaystyle 15\times 15+125=225+125=350\)

74) 7777.009 – 596.999 – 89.989 = ?

(a) 6080

(b) 6800

(c) 7090

(d) 8200

(e) 7500


Solution: (c)

By approximation,

7777 – 597 – 90 = 7777 – 687 = 7090

75) 6888.009 – 487.999 – 87.989 = ?

(a) 6000

(b) 6570           

(c) 6430

(d) 6200

(e) 6310


Solution: (e)
\(\displaystyle 6888-488-89=6888-577=6311\approx 6310\)

76) \(\displaystyle 19.003\times 22.998-280.010=?\)

(a) 220

(b) 110

(c) 160

(d) 90

(e) 200


Solution: (c)

By approximation method,

\(\displaystyle 19\times 23-280=437-280=157\approx 160\)

77) 6885.009 – 419.999 – 94.989 = ?

(a) 6650

(b) 6830

(c) 6370

(d) 6200

(e) 6450


Solution: (c)

By approximation method,

\(\displaystyle ?=6885.009-419.999-94.989=6885-420-95\approx 6370\)

78) \(\displaystyle {{6.5}^{2}}=?\)

(a) 58

(b) 25

(c) 43

(d) 35

(e) 50


Solution: (c)

\(\displaystyle ?={{6.5}^{2}}=42.25\approx 43\)

Alternately without pen and paper, by approximation

6 and 7 are nearest numbers to 6.5. Squares of 6 and 7 are 36 and 49. So inbetween number from the options is 43. Hence the answer is (C)

79) \(\displaystyle 11111\div 111\div 11=?\)

(a) 9

(b) 20

(c) 5

(d) 2

(e) 25


Solution: (a)

\(\displaystyle ?=11111\div 111\div 11\)

\(\displaystyle 11111\times \frac{1}{{111}}\times \frac{1}{{11}}=\frac{{11111}}{{1221}}=9.09\approx 9\)

Alternately without pen and paper, by approximation method

11111 is approximately 100 more than 111 So if we divide 100 by 11, we get approx 9.

80) \(\displaystyle 16.046\div 2.8\times 0.599=?\)

(a) 3.5

(b) 7.9

(c) 1.9

(d) 5.6

(e) 6.2


Solution: (a)

\(\displaystyle 16.046\div 2.8\times 0.599=?\)

\(\displaystyle 5.73\times 0.599=?\)

\(\displaystyle ?=3.43\approx 3.5\)