Rankers Hub

ratio and proportion questions with solutions for competitive exams

MCQ on ratio and proportion with solutions

Solve the following MCQ on ratio and proportion:

If A : B =   \(\displaystyle \frac{1}{2}:\frac{3}{8}\), B : C =  \(\displaystyle \frac{1}{3}:\frac{5}{9}\) and C : D =  \(\displaystyle \frac{5}{6}:\frac{3}{4}\), then the ratio A : B : C : D is

(a) 6 : 4 : 8 : 10

(b) 6 : 8 : 9 : 10

(c) 8 : 6 : 10 : 9

(d) 4 : 6 : 8 : 10

(e) 6 : 8 : 10 : 12

Answer: (c)

A : B =\(\displaystyle \frac{1}{2}:\frac{3}{8}\)= 4 : 3 = 8 : 6

B : C =\(\displaystyle \frac{1}{3}:\frac{5}{9}\)= 3 : 5 = 6 : 10

C : D =\(\displaystyle \frac{5}{6}:\frac{3}{4}\)= 10 : 9

Therefore, A : B : C : D = 8 : 6 : 10 : 9

If A : B : C = 2 : 3 : 4, then ratio \(\displaystyle \frac{A}{B}:\frac{B}{C}:\frac{C}{A}\) is equal to

(a) 8 : 9 : 16

(b) 8 : 9 : 12

(c) 8 : 9 : 24

(d) 4 : 9 : 16

(e) 5 : 9 : 14

Answer: (c)

A : B : C = 2 : 3 : 4

\(\displaystyle \Rightarrow \) \(\displaystyle \frac{A}{B}=\frac{2}{3},\frac{B}{C}=\frac{3}{4},\frac{C}{A}=\frac{4}{2}=2\)

\(\displaystyle \Rightarrow \) \(\displaystyle \frac{A}{B}:\frac{B}{C}:\frac{C}{A}=\frac{2}{3}:\frac{3}{4}:\frac{2}{1}\)

= 8 : 9 : 24

If a : (b+c) = 1 : 3 and c : (a+ b) = 5:7, then b : (a+c) is equal to

(a) 1 : 2

(b) 2 : 3

(c) 1 : 3

(d) 2 : 1

(e) 3 : 1

Answer: (a)

a : (b+c) = 1 : 3

\(\displaystyle \Rightarrow \) \(\displaystyle \frac{{b+c}}{a}=\frac{3}{1}\) Þ \(\displaystyle \frac{{b+c}}{a}+1=\frac{3}{1}+1\)

\(\displaystyle \frac{{a+b+c}}{a}=\frac{{3+1}}{1}=\frac{4}{1}\)  ….. (i)

Similarly, \(\displaystyle \frac{{a+b}}{c}=\frac{7}{5}\)

\(\displaystyle \Rightarrow \) \(\displaystyle \frac{{a+b+c}}{c}=\frac{{12}}{5}\) …..(ii)

On dividing (i) by (ii),

\(\displaystyle \frac{c}{a}=\frac{{4\times 5}}{{12}}=\frac{5}{3}=k\) ….. (iii)

From equation (i), b = 4k

\(\displaystyle \frac{b}{{a+c}}=\frac{{4k}}{{3k+5k}}=1:2\)

If p : q : r = 1 : 2 : 4, then  \(\displaystyle \sqrt{{5{{p}^{2}}+{{q}^{2}}+{{r}^{2}}}}\) is equal to

(1) 5

(2) 2q

(3) 5p

(4) 4r

(e) 3q

The Ratio and Proportion questions answer is (b)

\(\displaystyle \frac{p}{1}=\frac{q}{2}=\frac{r}{4}=k\)

\(\displaystyle \Rightarrow \) p = k, q = 2k, r = 4k

\(\displaystyle \sqrt{{5{{p}^{2}}+{{q}^{2}}+{{r}^{2}}}}=\sqrt{{5{{k}^{2}}+4{{k}^{2}}+16{{k}^{2}}}}=\sqrt{{25{{k}^{2}}}}\)

= 5k = 5p

The mean proportional between \(\displaystyle (3+\sqrt{2})and(12-\sqrt{{32}})\)  is

(a)  \(\displaystyle \sqrt{7}\)

(b)  \(\displaystyle 2\sqrt{7}\)

(c) 6

(d)  \(\displaystyle \frac{{15-3\sqrt{2}}}{2}\)

(e) 5

Answer for this MCQ on Ratio and Proportion is (b)

Mean proportional = \(\displaystyle \sqrt{{(3+\sqrt{2})(12-\sqrt{{32}})}}\)

= \(\displaystyle \sqrt{{(3+\sqrt{2})4(3-\sqrt{2})}}\)

= \(\displaystyle 2\sqrt{{9-2}}=2\sqrt{7}\)