ratio and proportion mcq for sbi po
Solve the following MCQ on ratio and proportion:
If x : y = 2 : 3, then the value of \(\displaystyle \frac{{3x+2y}}{{9x+5y}}\) is equal to
(a) \(\displaystyle \frac{{11}}{4}\)
(b) \(\displaystyle \frac{{4}}{11}\)
(c) \(\displaystyle \frac{{1}}{2}\)
(d) \(\displaystyle \frac{{5}}{14}\)
(e) \(\displaystyle \frac{{11}}{19}\)
Answer for this MCQ on Ratio and Proportion is (b)
Given , \(\displaystyle \frac{x}{y}=\frac{2}{3}\) ….. (i)
Expression = \(\displaystyle \frac{{3x+2y}}{{9x+5y}}\)
\(\displaystyle \frac{{3\frac{x}{y}+2}}{{9\frac{x}{y}+5}}=\frac{{3\times \frac{2}{3}+2}}{{9\times \frac{2}{3}+5}}\) [from (i)]
= \(\displaystyle \frac{{2+2}}{{11}}=\frac{4}{{11}}\)
If a : b : c = 2 : 3 : 4 and 2a –3b + 4c = 33, then the value of c is
(a) 6
(b) 9
(c) 12
(d) \(\displaystyle \frac{{66}}{7}\)
(e) 15
The Ratio and Proportion questions answer is (c)
a : b : c = 2 : 3 : 4
\(\displaystyle \frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\) (let)
\(\displaystyle \Rightarrow \) a = 2k, b = 3k, and c = 4k
Given 2a – 3b + 4c = 33
\(\displaystyle \Rightarrow \)2 × 2k –3×3k + 4 ×4k = 33
\(\displaystyle \Rightarrow \) 4k –9k + 16k = 33
\(\displaystyle \Rightarrow \) 11k = 33 Þ \(\displaystyle k=\frac{{33}}{{11}}=3\)
Therefore, c = 4k = 4×3 = 12
If a : b : c = 7 : 3 : 5, then (a + b + c) : (2a + b – c) is equal to
(a) 1 : 2
(b) 2 : 3
(c) 3 : 4
(d) 5 : 4
(e) 4 : 7
Answer: (d)
a : b : c = 7 : 3 : 5
\(\displaystyle \Rightarrow \frac{a}{7}=\frac{b}{3}=\frac{c}{5}=k\) (let)
\(\displaystyle \Rightarrow \)a = 7k, b = 3k, c = 5k
Now, (a + b + c) : (2a + b – c)
= (7k + 3k + 5k) : (2 ×7k +3k –5k)
= 15 k : 12 k = 5 : 4
If two times of A is equal to three times of B and also equal to four times of C, then A : B : C is
(a) 2 : 3 : 4
(b) 3 : 4 : 2
(c) 4 : 6 : 3
(d) 6 : 4 : 3
(e) 5 : 6 : 7
Answer: (d)
According to the question,
2A = 3B
\(\displaystyle \Rightarrow \) B = \(\displaystyle \frac{2}{3}\) A
and 2A = 4C
\(\displaystyle \Rightarrow \) C = \(\displaystyle \frac{1}{2}\) A
Therefore,
A : B : C = A : \(\displaystyle \frac{2}{3}\) : \(\displaystyle \frac{1}{2}\) A
= 1 : \(\displaystyle \frac{2}{3}\) A : \(\displaystyle \frac{1}{2}\)
= 6 : 4 : 3
If A and B are in the ratio 3 : 4, and B and C in the ratio 12 : 13, then A and C will be in the ratio
(a) 3 :13
(b) 9 : 13
(c) 36 :13
(d) 13 : 9
(e) 12 : 17
Answer: (b)
A : B = 3 : 4 = 9 : 12
B : C = 12 : 13
Therefore, A : B : C = 9 : 12 : 13
\(\displaystyle \Rightarrow \) A : C = 9 : 13
Alternately :
A : C = xp : yq
= 3 × 12 : 4 × 13
= 9 : 13
Pages:
1 2 3 4 5 6 7 8 9 10 11 12