Rankers Hub

ratio and proportion questions for ssc cgl

MCQ on ratio and proportion for SSC CGL

Solve the following ratio and proportion questions:

Two persons A and B invested in a business with 115000 and 75000 rupees respectively. They agree that 40% of the profit should be divided equally among them and rest is divided between them according to their investment. If A got 500 rupee more than B, then the total profit is.

(a) 3599.34

(b) 699.34

(c) 3958.34

(d) 999.34

(e) None of these

Answer: (c)

Ratio in which the profit will divide – 23:15. Let the profit be P

Now, \(\displaystyle [(\frac{{23}}{{38}}-\frac{{15}}{{38}})]\times \frac{{60}}{{10}}\times P=500\)

P = 3958.34

The ratio of the monthly salaries of A and B is in the ratio 15 : 16 and that of B and C is in the ratio 17 : 18. Find the monthly income of C if the total of their monthly salary is Rs 1,87,450.

(a) ₹ 66,240

(b) ₹ 72,100

(c) ₹ 62,200

(d) ₹ 65,800

(e) ₹ 60,300

Answer: (a)

\(\displaystyle \frac{A}{B}=\frac{{15}}{{16}}and\frac{B}{C}=17\times 18\)

So A : B : C = 15 × 17 : 16 × 17 : 16 × 18 = 255 : 272 : 288

So C’s salary = \(\displaystyle [\frac{{288}}{{(255+272+288)}}]\times 1,87,450=66240\)

If a : b = 7 : 9 and b : c =15 : 7, then what is a : c?

(a) 5 : 3

(b) 3 : 5

(c) 7 : 21

(d) 7 : 15

(e) 8 : 13

Answer: (a)

Solution for the Ratio and Proportion question is,

a : c = (a : b) × (b : c)

= \(\displaystyle \frac{7}{9}\times \frac{{15}}{7}=\frac{{15}}{9}=5:3\)

Alternately :

A : C = 7 × 15 : 9 × 7 = 5 : 3

If p : q = r : s = t : u = 2 : 3, then (mp + nr + ot) : (mq + ns +ou) is equal to :

(a) 1 : 3

(b) 1 : 2

(c) 2 : 3

(d) 3 : 2

(e) 3 : 5

Answer: (c)

If \(\displaystyle \frac{a}{b}=\frac{c}{d}=\frac{e}{f}\)  these ratios is equal to \(\displaystyle \frac{{a+c+e}}{{b+d+f}}\)

Here, \(\displaystyle \frac{p}{q}=\frac{r}{s}=\frac{t}{u}=\frac{2}{3}\)

\(\displaystyle \frac{{mp}}{{mq}}=\frac{{nr}}{{ns}}=\frac{{ot}}{{ou}}=\frac{2}{3}\)

\(\displaystyle \frac{{mp+nr+ot}}{{mq+ns+ou}}=\frac{2}{3}or2:3\)

If a : b = c : d = e : f = 1 : 2, then (pa + qc + re) : (pb + qd +rf) is equal to :

(a) p : (q + r)

(b) (p + q) : r

(c) 2 : 3

(d) 1 : 2

(e) 3 : 5

Answer: (d)

\(\displaystyle \frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{1}{2}\)

\(\displaystyle \frac{{pa}}{{pb}}=\frac{{qc}}{{qd}}=\frac{{re}}{{rf}}=\frac{1}{2}\)

\(\displaystyle \frac{{pa+qc+re}}{{pb+qd+rf}}=\frac{1}{2}=1:2\)