Rankers Hub

ratio and proportion questions and answers for ssc cgl

ratio and proportion questions and answers

Solve the following MCQ on ratio and proportion:

If x : y = 3 : 1, then  \(\displaystyle {{x}^{3}}-{{y}^{3}}:{{x}^{3}}+{{y}^{3}}=?\)

(a) 13 : 14

(b) 14 : 13

(c) 10 : 11

(d) 11 : 10

(e) 12 : 13

Answer: (a)

\(\displaystyle \frac{x}{y}=\frac{3}{1}\) Þ \(\displaystyle \frac{{{{x}^{3}}}}{{{{y}^{3}}}}=\frac{{27}}{1}\)

\(\displaystyle \Rightarrow \) \(\displaystyle \frac{{{{x}^{3}}-{{y}^{3}}}}{{{{x}^{3}}+{{y}^{3}}}}=\frac{{27-1}}{{27+1}}\)

[By componendo  and dividendo]

= \(\displaystyle \frac{{26}}{{28}}=\frac{{13}}{{14}}=13:14\)

The fourth proportional to 0.12, 0.21, 8 is :

(a) 8.9

(b) 56

(c) 14

(d) 17

(e) 18

Answer: (c)

Let the fourth proportional be x Then, \(\displaystyle \frac{{0.12}}{{0.21}}=\frac{8}{x}\)

or x = \(\displaystyle 8\times \frac{{21}}{{12}}\)

or x = 14

Alternately  :

Fourth proportion = \(\displaystyle \frac{{bc}}{a}=\frac{{0.21\times 18}}{{0.12}}=14\)

The ratio  \(\displaystyle {{2}^{{1.5}}}:{{2}^{{0.5}}}\)  is the same as :

(a) 2 : 1

(b) 3 : 1

(c) 6 : 1

(d) 3 : 2

(e) 3 : 5

Answer: (a)

Required ratio = \(\displaystyle \frac{{{{2}^{{1.5}}}}}{{{{2}^{{0.5}}}}}\)

= \(\displaystyle \frac{{{{2}^{{1.5-0.5}}}}}{1}\)

\(\displaystyle \frac{2}{1}=2:1\)

If A : B = 3 : 4, B : C = 5 : 7 and C : D = 8 : 9 then A : D is equal to

(a) 3 : 7

(b) 7 : 3

(c) 21 : 10

(d) 10 : 21

(e) 4 : 5

The Ratio and Proportion questions answer is (d)

A : D = \(\displaystyle \frac{A}{D}=\frac{A}{B}\times \frac{B}{C}\times \frac{C}{D}\)

= \(\displaystyle \frac{3}{4}\times \frac{5}{7}\times \frac{8}{9}=\frac{{10}}{{21}}=10:21\)

If b is the mean proportional of a and c, then  \(\displaystyle {{(a-b)}^{3}}:{{(b-c)}^{3}}\)  equals

(a)  \(\displaystyle {{a}^{3}}:{{c}^{3}}\)

(b)  \(\displaystyle {{b}^{2}}:{{c}^{2}}\)

(c)  \(\displaystyle {{a}^{2}}:{{c}^{2}}\)

(d)  \(\displaystyle {{a}^{3}}:{{b}^{3}}\)

(e)  \(\displaystyle {{a}^{2}}:{{b}^{2}}\)

Answer: (d)

Since b is the mean proportional of a and c.

\(\displaystyle \frac{a}{b}=\frac{b}{c}=k\) (suppose)

a = bk, b = ck

\(\displaystyle \frac{{{{{(a-b)}}^{3}}}}{{{{{(b-c)}}^{3}}}}=\frac{{{{{(bk-b)}}^{3}}}}{{{{{(ck-c)}}^{3}}}}\)

\(\displaystyle \frac{{{{b}^{3}}{{{(k-1)}}^{3}}}}{{{{c}^{3}}{{{(k-1)}}^{3}}}}=\frac{{{{b}^{3}}}}{{{{c}^{3}}}}=\frac{{{{a}^{3}}}}{{{{b}^{3}}}}\)