ratio and proportion questions and answers for ssc cgl
Solve the following MCQ on ratio and proportion:
If x : y = 3 : 1, then \(\displaystyle {{x}^{3}}-{{y}^{3}}:{{x}^{3}}+{{y}^{3}}=?\)
(a) 13 : 14
(b) 14 : 13
(c) 10 : 11
(d) 11 : 10
(e) 12 : 13
Answer: (a)
\(\displaystyle \frac{x}{y}=\frac{3}{1}\) Þ \(\displaystyle \frac{{{{x}^{3}}}}{{{{y}^{3}}}}=\frac{{27}}{1}\)
\(\displaystyle \Rightarrow \) \(\displaystyle \frac{{{{x}^{3}}-{{y}^{3}}}}{{{{x}^{3}}+{{y}^{3}}}}=\frac{{27-1}}{{27+1}}\)
[By componendo and dividendo]
= \(\displaystyle \frac{{26}}{{28}}=\frac{{13}}{{14}}=13:14\)
The fourth proportional to 0.12, 0.21, 8 is :
(a) 8.9
(b) 56
(c) 14
(d) 17
(e) 18
Answer: (c)
Let the fourth proportional be x Then, \(\displaystyle \frac{{0.12}}{{0.21}}=\frac{8}{x}\)
or x = \(\displaystyle 8\times \frac{{21}}{{12}}\)
or x = 14
Alternately :
Fourth proportion = \(\displaystyle \frac{{bc}}{a}=\frac{{0.21\times 18}}{{0.12}}=14\)
The ratio \(\displaystyle {{2}^{{1.5}}}:{{2}^{{0.5}}}\) is the same as :
(a) 2 : 1
(b) 3 : 1
(c) 6 : 1
(d) 3 : 2
(e) 3 : 5
Answer: (a)
Required ratio = \(\displaystyle \frac{{{{2}^{{1.5}}}}}{{{{2}^{{0.5}}}}}\)
= \(\displaystyle \frac{{{{2}^{{1.5-0.5}}}}}{1}\)
\(\displaystyle \frac{2}{1}=2:1\)
If A : B = 3 : 4, B : C = 5 : 7 and C : D = 8 : 9 then A : D is equal to
(a) 3 : 7
(b) 7 : 3
(c) 21 : 10
(d) 10 : 21
(e) 4 : 5
The Ratio and Proportion questions answer is (d)
A : D = \(\displaystyle \frac{A}{D}=\frac{A}{B}\times \frac{B}{C}\times \frac{C}{D}\)
= \(\displaystyle \frac{3}{4}\times \frac{5}{7}\times \frac{8}{9}=\frac{{10}}{{21}}=10:21\)
If b is the mean proportional of a and c, then \(\displaystyle {{(a-b)}^{3}}:{{(b-c)}^{3}}\) equals
(a) \(\displaystyle {{a}^{3}}:{{c}^{3}}\)
(b) \(\displaystyle {{b}^{2}}:{{c}^{2}}\)
(c) \(\displaystyle {{a}^{2}}:{{c}^{2}}\)
(d) \(\displaystyle {{a}^{3}}:{{b}^{3}}\)
(e) \(\displaystyle {{a}^{2}}:{{b}^{2}}\)
Answer: (d)
Since b is the mean proportional of a and c.
\(\displaystyle \frac{a}{b}=\frac{b}{c}=k\) (suppose)
a = bk, b = ck
\(\displaystyle \frac{{{{{(a-b)}}^{3}}}}{{{{{(b-c)}}^{3}}}}=\frac{{{{{(bk-b)}}^{3}}}}{{{{{(ck-c)}}^{3}}}}\)
\(\displaystyle \frac{{{{b}^{3}}{{{(k-1)}}^{3}}}}{{{{c}^{3}}{{{(k-1)}}^{3}}}}=\frac{{{{b}^{3}}}}{{{{c}^{3}}}}=\frac{{{{a}^{3}}}}{{{{b}^{3}}}}\)
Pages:
1 2 3 4 5 6 7 8 9 10 11 12