Rankers Hub

ratio and proportion questions for bank exams with solutions

MCQ on ratio and proportion with solutions

Solve the following MCQ on ratio and proportion:

₹  6200 divided into three parts proportional to   \(\displaystyle \frac{1}{2}:\frac{1}{3}:\frac{1}{5}\) are respectively

(a) ₹ 3000, ₹ 2000, ₹ 1200

(b) ₹ 3500, ₹ 1500, ₹ 1200

(c) ₹ 2500, ₹ 2000, ₹ 1700

(d) ₹ 2200, ₹ 3000, ₹ 1000

(e) ₹ 2400, ₹ 3200, ₹ 1500

The Ratio and Proportion questions answer is (a)

Ratio = \(\displaystyle \frac{1}{2}:\frac{1}{3}:\frac{1}{5}\)

= \(\displaystyle \frac{1}{2}\times 30:\frac{1}{3}\times 30:\frac{1}{5}\times 30\)

= 15 : 10 : 6

Sum of the ratios = 15 + 10 + 6 = 31

Therfore, First part = \(\displaystyle \frac{{15}}{{31}}\times 6200=3000\)

Second part = \(\displaystyle \frac{{10}}{{31}}\times 6200=2000\)

Third part = \(\displaystyle \frac{6}{{31}}\times 6200=1200\)

94 is divided into two parts in such a way that the fifth part of the first and the eighth part of the second are in the ratio 3 : 4. The first part is :

(a) 30

(b) 36

(c) 40

(d) 28

(e) 32

Answer: (a)

First part = x and second part = 94 – x

Therefore, \(\displaystyle \frac{{\frac{x}{5}}}{{\frac{{94-x}}{8}}}=\frac{3}{4}\)

\(\displaystyle \frac{x}{5}\times \frac{8}{{(94-x)}}=\frac{3}{4}\)

\(\displaystyle \Rightarrow \) 32 x = 15 × 94 – 15x

\(\displaystyle \Rightarrow \) 47 x = 15 × 94

x = \(\displaystyle \frac{{15\times 94}}{{47}}=30\)

If a : b = 5 : 7 and c : d = 2a : 3b, then ac : bd is :

(a) 20 : 38

(b) 50 : 147

(c) 10 : 21

(d) 50 : 151

(e) 55 : 251

Answer: (b)

\(\displaystyle \frac{a}{b}=\frac{5}{7},\frac{c}{d}=\frac{{2a}}{{3b}}\)

\(\displaystyle \frac{a}{b}\times \frac{c}{d}=\frac{5}{7}\times \frac{{2a}}{{3b}}\)

\(\displaystyle \frac{{ac}}{{bd}}=\frac{{10}}{{21}}\times \frac{5}{7}=\frac{{50}}{{147}}=50:147\)

If x : y = 3 : 2, then the ratio  \(\displaystyle 2{{x}^{2}}+3{{y}^{2}}:3{{x}^{2}}-2{{y}^{2}}\) is equal to :

(a) 12 : 5

(b) 6 : 5

(c) 30 : 19

(d) 5 : 3

(e) 4 : 7

Answer: (c)

x : y = 3 : 2

\(\displaystyle {{x}^{2}}:{{y}^{2}}=9:4\)

\(\displaystyle \frac{{2{{x}^{2}}+3{{y}^{2}}}}{{3{{x}^{2}}-2{{y}^{2}}}}=\frac{{2\frac{{{{x}^{2}}}}{{{{y}^{2}}}}+3}}{{3\frac{{{{x}^{2}}}}{{{{y}^{2}}}}-2}}\)

= \(\displaystyle \frac{{2\times \frac{9}{4}+3}}{{3\times \frac{9}{4}-2}}=\frac{{\frac{{18+12}}{4}}}{{\frac{{27-8}}{4}}}=30:19\)

If a : b = b : c, then  \(\displaystyle {{a}^{4}}:{{b}^{4}}\)  is equal to

(a)  \(\displaystyle ac:{{b}^{2}}\)

(b)  \(\displaystyle {{a}^{2}}:{{c}^{2}}\)

(c)  \(\displaystyle {{c}^{2}}:{{a}^{2}}\)

(d)  \(\displaystyle {{b}^{2}}:ac\)

(e)  \(\displaystyle {{b}^{2}}:{{c}^{2}}\)

Answer for this MCQ on Ratio and Proportion is (b)

\(\displaystyle \frac{a}{b}=\frac{b}{c}\)

\(\displaystyle {{b}^{2}}=ac\) Þ \(\displaystyle {{b}^{4}}={{a}^{2}}{{c}^{2}}\)

\(\displaystyle \frac{{{{a}^{4}}}}{{{{b}^{4}}}}=\frac{{{{a}^{4}}}}{{{{a}^{2}}{{c}^{2}}}}=\frac{{{{a}^{2}}}}{{{{c}^{2}}}}\)